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Experimental observation of the characteristic relations of type-I intermittency
in the presence of noise
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Recently, it has been reported that the characteristic relation of type-I intermittency in the presence of noise
is deformed nontrivially as the channel widthe changes from the positive region to the negative. In order to
verify it experimentally as a real phenomenon, we study the characteristic relations both fore,0 and for
e.0 in a simple inductor-resistor-diode circuit that is under noisy circumstances. The experimental results
agree well with the theoretical expectation that the characteristic relations are^ l &}e21/4 for e.0 and ^ l &
}exp(aueu3/2) for e,0.
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I. INTRODUCTION

In nonlinear dynamical systems, it is readily observed t
long quasiregular signals are interrupted by short cha
bursts irregularly. The phenomenon, so-called intermitten
has been extensively studied for a long time because it i
important route to chaos along with period doubling, qua
periodicity, and crisis. Pomeau and Manneville classified
into three types, types I, II, and III, in terms of the structu
of the local Poincare´ map, xn115xn1axn

21e, xn115(1
1e)xn1axn

3 , and xn1152(11e)xn2axn
3 , respectively

@1–4#. And they obtained the characteristic relations of the
which are^ l &}e21/2 for type I and^ l &}e21 for types II and
III, where ^ l & is the average laminar length, the parametee
in type-I intermittency is the channel width between the
agonal and the local Poincare´ map, and 11e in types II and
III is the slope of the local Poincare´ map around the tangen
point @1–3,5#. In a more recent study it was known th
characteristic relations of intermittency depend not only
the structure of the local Poincare´ map but on the reinjection
probability distribution~RPD!. Accordingly, the characteris
tic relation of type-I intermittency is of the form̂ l &
}e2n(0,n< 1

2 ) or ^ l &;2 ln e @6,7#, and that of types II and

III is of the form ^ l &}e2n ( 1
2 <n<1) depending on the RPD

@8#.
Along with that, other authors have studied characteri

relations of intermittency in the presence of noise, which
unavoidable in real systems. Eckmannet al. studied them in
the regione.0 and extended their result to the regione
,0 @10#. So they were misled to the idea that the charac
istic relation is trivially related to the change of signs of t
channel width. Hirschet al. also studied the subject by usin
a Fokker-Planck equation@11# and adopting renormalizatio
group analysis@12#, but obtained the characteristic relatio
only in the regione.0. Very recently, Kye and Kim have
theoretically obtained the characteristic relations of typ
intermittency in the presence of noise in the regione,0 by
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using a Fokker-Planck equation. They have found the ch
acteristic relation changes nontrivially as the parametee
moves from the positive region to the negative@13#.

This characteristic relation is very important in analyzi
experimental results of a system where noise accompa
intrinsically. For example, a gain-modulated CO2 laser pro-
duces type-I intermittency when the operating frequency
deviated from the gain line center@14#. This result cannot be
explained satisfactorily without the above characteristic re
tion because the system is affected by intrinsic noise suc
quantum noise, pumping noise, etc.@15#. So it is necessary to
verify the characteristic relation experimentally, which h
never been tried yet.

In this paper, we purpose to observe experimentally
deformation of the characteristic relation of type-I interm
tency in the presence of noise that Kye and Kim stud
theoretically. For the experiment, we use a simple induc
resistor-diode~IRD! circuit where all the parameters includ
ing noise amplitude can be precisely controlled with ea
Section II describes an analytic solution following Re
@6,13#, and Secs. III and V show numerically and experime
tally the characteristic relation of type-I intermittency in th
presence of noise.

II. THEORETICAL BACKGROUND

When the local Poincare´ map of type-I intermittency in
the presence of noise is given@2,3,6,8,9,11,12,16#,

xn115xn1axn
21e1A2Djn ~a.0!, ~1!

the characterisitic relation can be obtained for two cases
the channel widthe.0 ande,0. HereD is the dispersion of
Gaussian white noisejn .

For e@D.0, noise can be neglected since the chan
widths mainly contribute to the characteristic relation. So
characteristic relation can be obtained by solving the gen
form of type-I intermittencyxn115xn1axn

21e. On the
other hand fore,0, Eq. ~1! can be transformed into a dif
ferential form ẋ52dV(x)/dx1A2Dj(t), wheredV(x)/dx

52ax22e and ẋ5xn112xn in the long laminar length ap
proximation.
©2002 The American Physical Society22-1
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When we neglect the effect of noise fore@0, the charac-
teristic relation of type-I intermittency can be obtained
integratingdx/dt5ax21e under the long laminar length ap
proximation. If we give a gate that sets an acceptanceuyinu
<c on deviations in the laminar region, the laminar leng
l (yin ,c) for the reinjection atyin becomes

l ~yin ,c!5
1

Aae
F tan21SAa

e
cD 2tan21SAa

e
yinD G .

Then the average laminar length is given by

^ l &5 l ~0,c!E
2D

0

P~yin!dyin1E
0

c

l ~yin ,c!P~yin!dyin ,

where2D is the value ofyin representing the lower boun
of the reinjection~LBR!.

From the above equation we can obtain various charac
istic relations according to the RPD that is given byP(yin).
When the LBR is below the tangent point, the above eq
tion can be written as

^ l &5
1

Aae
tan21SAa

e
cD}e21/2,

which is irrespective of the RPDs, because the first term
dominant. On the contrary when the LBR is above the t
gent point, the first term vanishes and the second term c
verges to a constant ase→0. And if the LBR is at the tan-
gent point, various characteristic relations can be obtain
When RPD is fixed, the characteristic relation has the sa
form as the case below. In the case of the nonuniform R
of the form 1/(2Ad1cAyin1d), the characteristic relation i
given by

^ l &5
iA2 iAe

a3/4AcAe
F tan21S a1/4Ac

AiAe
D 2tan21S a1/4Ac

A2 iAe
D G1c.c.,

where c.c. denotes the complex conjugate. This character
relation has a real value and is the form^ l &}e21/4 ase→0.
And when the RPD is uniform, in the same manner, we
obtain a characteristic relation such that^ l &} ln(e) as e→0.
Thus we understand that the characteristic relation depe
only on the RPD whene@0 although noise is applied.

On the other hand, whene,0, we can approximate th
difference Eq.~1! in the long laminar region to the stochast
differential equation as follows@11#:

ẋ52V8~x!1A2Dj~ t !, ~2!

where the dot and prime denote differentiation with resp
to t andx, respectively,j(t) is the Gaussian white noise suc
that ^j(t8)j(t)&5d(t82t) and ^j(t)&50 @17#, andV(x) is
the potential given byV(x)52 1

3 ax32ex1c, wherec is the
integration constant. The above equation can be consid
as the equation of motion of the point particle under
potentialV(x) and random perturbationj(t).
03622
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From the above stochastic differential equation, we obt
the backward Fokker-Planck equation~FPE! @11,17# in the
well-established procedure@17# as follows:

]G~x,t !

]t
52V8~x!

]G~x,t !

]x
1D

]2G~x,t !

]x2
, ~3!

where G(x,t) is the probability density of the particle a
$x,t%. After integrating the above FPE, we obtain a me
first-passage time~MFPT! as follows@11,17#:

2152V8~x!
dT

dx
1D

d2T

dx2
, ~4!

where T(x) is the mean escaping time defined byT(x)
5^t&52*0

`t„]G(x,t)/]t…dt under the boundary condition
that G(x,0)51 and lim

t→`
G(x,t)50. The MFPT function

T(x) is the average transition time from the reinjection to t
escaping point of the particle under the potentialV(x) and
random perturbation.

The general solution of Eq.~3! can be derived as follows

T~x!5cE
xl

x

dx8expH 1

D
V~x8!J

2
1

DE
xl

x

dx8E
xl

x8
dx9expH 1

D
@V~x8!2V~x9!#J ,

~5!

wherec is the integration constant,xl is the lower bound of
the laminar phase, andx is the destination point of the tran
sition. We can easily verify that Eq.~5! is the general solu-
tion for the MFPT equation by inserting Eq.~5! into Eq.~4!.

If noise is small enough such thatD!1, the first term in
the above equation is suppressed by the factor of 1/D and the
second term becomes dominant. The second term is no
tegrable analytically. Then we can expand approximately
potential at the extremal pointsx6 such thatV(x)'V(x6)
1„V9(x6)/2…(x2x6)21O(@x2x6#3).

In that case, the MFPT functionT(x) can be approxi-
mated as follows:

T~x!'2
1

D
expH 1

D
@V~x1!2V~x2!#J

3E
xl

x

dx8E
xl

x8
dx9 expH 1

2D
@V9~x1!~x82x1!2

2V9~x2!~x92x2!2#J . ~6!

The extremal points are given byx656A2e/a in Eq. ~2!.
In the far outside of the laminar phase~i.e., at the limitx
→` and xl!x2), we can perform the integration of th
quadratic exponent@17# and then obtain the following ap
proximated solution of the MFPT equation:
2-2



a-

EXPERIMENTAL OBSERVATION OF THE . . . PHYSICAL REVIEW E 65 036222
FIG. 1. The RPD and the characteristic rel
tion in the absence of noise.~a! The RPD shows a
slope of2 1

2 and ~b! the characteristic relation is
well fitted to the slope2 1

4 that is the exponent
when the RPD is of the form 1/Ax.
a

mi-

itc
e of
he
ein-
ope
uTu5
p

Aaueu
expH 4

3DAa
ueu3/2J for e,0. ~7!

Thus the characterisitc relation becomes

^ l &}^ l &0 expH 4

3DAa
ueu3/2J . ~8!

III. NUMERICAL SIMULATION

Now we study the deformation of the characteristic rel
tions from ^ l &}e21/4 to ^ l &}^ l &0 exp@(4/3DAa)ueu3/2# when
the RPD is of the form 1/Ayin by using an illustrating model
of a logistic map

xn115F~A,B;xn!5 f A@ f B~xn!#,

where f A(xn)54Axn(12xn) and f B(xn)54Bxn(12xn). In
the map, the critical value of parameterBc at which tangent
bifurcation occurs is
03622
-

29AA18A3/21~4A23!3/2

16AA~A21!
,

and the tangent pointxc is

2

3
2

A423/Bc

6
.

Since the chaotic band nearBc is bounded in the range
@xL ,xU#, the point of LBR is the tangent pointxc5xL
50.563 066 00 . . . at A5At50.941 461 94 . . . . Here xU
5F(A,Bc ;xM)5A, where xM is a point satisfying
dF(A,Bc ;xM)50 andxL5F(A,Bc ;xU). We are interested
in the characteristic relation, the change of the average la
nar length according to the departure ofB from Bc , i.e., e
5Bc2B for a fixed value ofA.

Figures 1~a! and 1~b! show the RPD and the characteris
relations, respectively, in the absence of noise. The slop
the RPD in the logarithmic scale is obtained by dividing t
gate into 1000 sections and by counting the number of r
jections at each section. As is shown in the figure, the sl
v-
FIG. 2. The characteristic relations of the a
erage laminar length versusueu in the presence of
noise.~a! is for whole range,~b! for e.0, and~c!
and ~d! for e,0.
2-3
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is well fitted to the21/2 slope. The slope of the averag
laminar length according to the channel width is also w
fitted to the21/4 slope. From these, we can understand t
the RPD is of the form 1/Ax, and the LBR is at the tangen
point.

The scaling relation of the laminar length in the presen
of noise is studied by applying small 5.031023 noise to the
above map such thatxn115 f A@ f B(xn)#1Djn . In this map
since RPD is of the form 1/Ax, the characterisitic relations o
the average laminar length will be deformed from̂l &
}e21/4 for e@0 to ^ l &}^ l &0 exp@(4/3DAa)ueu3/2# for e,0.
Figure 2 shows the characterisitic relations of the aver
laminar length according to the channel widthe. As is shown
in Fig. 2~b!, the slope is well fitted to21/4 slope whene
@0. On the contrary, as shown in Fig. 2~d!, whene,0, the
slope is well fitted to the 3/2 slope that is the exponent of

FIG. 3. Schematic diagram of experimental setup.
03622
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exponential term of Eq.~7!. So in this map the characterisiti
relation deforms from ^ l &}e21/4 to ^ l &
}^ l &0 exp@(4/3DAa)ueu3/2# as e changes from positive to
negative. Another evidence of deformation from^ l &}e21/2 to
^ l &}^ l &0 exp@(4/3DAa)ueu3/2#, when RPD is fixed at the tan
gent point, was already studied by Kye and Kim@13#. From
these results we can understand that the characteristic
tion of type-I intermittency in the presence of noise defor
from ^ l &}e2n (0,n< 1

2 ) or ^ l &;2 ln e for e@0 to ^ l &
}^ l &0 exp@(4/3DAa)ueu3/2# for e,0.

IV. EXPERIMENT SETUP

In the experiment, we use a simple IRD circuit where
the parameters including noise amplitude can be preci
controlled with ease.

A simple electronic circuit consisting of an inductor~100
mH!, a resistor ~130 V!, and a silicon junction diode
~1N4007! is connected in series as given in Fig. 3. A
voltage in the range between610V from a digital-analog
~DA! converter@National Instruments PCI-MIO-16E-1 with
an analog-digital~AD! converter# is reduced to 1/100 with a
voltage divider to control the amplitude of the driving sign
precisely. The DA converter with 12-bit resolution is co
trolled by a pentium-II personal computer. The reduced vo
age is added to another dc voltage and the total dc voltag
multiplied by a sinusoidal signal from a function genera
~Tektronix, FG 501A! by using a multiplier~MPY100!, of
amplitude 1.0 V. We add a 0.7 V bias voltage and a rand
noise signal from a random signal generator~HP 33120A!.
The total signal is applied to the simple electronic circu
The frequency from the function generator and the bias v
-I

V
is
FIG. 4. Temporal behavior of noise and type
intermittency.~a! 1.0-V noise from the function
generator,~b! noise across the diode,~c! and ~d!
type-I intermittency in the presence of 1.0-
noise when the amplitude of the driving signal
3.50 V and 3.55 V, respectively.
2-4
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FIG. 5. Distributions and autocorrelations o
noise.~a! and~b! are for the noise from the nois
generator and~c! and~d! for the noise across the
diode.
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age are fixed at 18 kHz and 0.7 V, respectively. All the e
ternal signals are added with operational amplifi
~LM353!. Through this configuration we can change the a
plitude of the driving signal by 0.03 mV at each step.

To obtain the desired experimental data, each recti
pulse is integrated with an integrating circuit. We add a 0.6
dc voltage to the rectified pulses before integration beca
the voltage drop of the silicon diode is20.6 V when it is
conducting. The rectified voltages are reduced with a v
able resistor in order to prevent distortion due to the peak
the integrated voltage being higher than 15 V. Here since
peaks of the rectified pulses correspond to those of the i
grated pulses, the peaks of the integrated pulses are stor
the computer through an AD converter. The digitizing fr
quency of the AD converter is 150 kHz. The chaotic outp
of the rectified and the integrated pulses are also monito
by using a digital storage oscilloscope~LeCroy 9310!.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The circuit exhibits various chaotic behaviors due to
nonlinear capacitance of the junction diode@18#. From the
circuit we obtain the typical temporal behaviors of the no
03622
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from the function generator, the noise across the diode,
type-I intermittency in the presence of noise near
period-3 window as given in Fig. 4. When noise of amplitu
1.0 V @Fig. 4~a!# is applied to the circuit after the driving
signal is turned off, the amplitude of the noise across
diode is reduced to 0.4 V as given in Fig. 4~b! due to the
inductor and the capacitance of the diode. This reduced n
is the real one affecting the characteristic relation of typ
intermittency in this circuit. When the driving signal i
turned on, we can observe that almost regular rectified pu
across the diode are interrupted irregularly by chaotic bu
as shown in Figs. 4~c! and 4~d!. When the amplitude of the
driving signal is 3.50 V, the circuit exhibits a short period
regular rectified pulses. But when the amplitude is increa
up to 3.55 V, the circuit exhibits a long period of regul
rectified pulses. The maximum amplitude, about 7.8 V, of
rectified signals is much higher than the amplitude of
noise across the diode. From the figures, we can unders
that the noise that affects the rectified pulses is about 5%
our experiment.

Next we obtain the probability distributions and autoco
relations of the noise from the noise generator and the n
across the diode. As shown in Figs. 5~a! and 5~b! the noise
FIG. 6. xn versusxn12 return maps when~a!
noise is absent and~b! 1.0-V noise is applied. The
amplitude of the driving signal is 3.5-V.
2-5
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FIG. 7. The RPD and the characteristic rel
tion in the absence of noise.~a! the RPD shows a
slope of2 1

2 when the amplitude of driving signa
is 3.507 V and ~b! the characteristic relation
shows the2

1
4 slope that is the exponent for th

RPD of the form 1/Ax.
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from the noise generator is well fitted to the Gaussian pro
and isd correlated. This means that the external noise can
regarded as Gaussian white noise. The noise across the
that is taken at every average period of 5msec is also well
fitted to the Gaussian profile and isd correlated as shown in
Figs. 5~c! and 5~d!. Thus the noise affecting the circuit ca
be regarded as Gaussian white noise.

From the temporal behavior of type-I intermittency, w
obtain thexn versusxn12 return map as shown in Fig.
whenthe amplitude of the driving signal is 3.5 V. The retu
map on the right-hand side in Fig. 6~a! does not touch the
diagonal line when the noise generator is turned off. Ho
ever when the noise generator is turned on, a broad curv
the right-hand side crosses the diagonal line, as show
Fig. 6~b!, due to the noise. This is the typical feature of t
return map of type-I intermittency in the presence of no
having a quadratic structure@7#. Here the tangent point is a
about 7.2 V.

In order to show the characteristic relation in the abse
of noise, we obtain the reinjection probability distributio
and the characteristic relation fore.0. When the amplitude
of the driving signal is 3.507 V, after the noise generator
03622
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turned off, we obtain the RPD by dividing the reinjectio
region from 7.2 V to 6.7 V into 100 sections. Figure 7~a! is
the log-log plot of the total number of reinjections at ea
section versusuVR2VTu, whereVR is the amplitude of rein-
jection andVT is the amplitude of the tangent point. As give
in the figure, the slope of the RPD is about21/2 when
uVR2VTu is small, which means that the RPD related to o
experiment is of the form 1/Ax.

To observe the characteristic relation, the average lam
length is obtained according to the amplitude of the drivi
signal for e.0 without noise. In this experiment, we in
crease the dc voltage from the DA converter by 0.03 mV
each step for fine tuning. As the amplitude of the drivi
signal increases, the length of the laminar phase is cou
and the data are stored in the computer. From the data we
find the bifurcation pointVt by searching for the last poin
where the chaotic burst appears. The bifurcation point, de
mined from the experimental data, isVt53.54 V. Average
laminar length atVt is about 103 in our circuit. The log-log
plot of average laminar length versuse, where e5Vt2V
.0, is given in Fig. 6~b!. In the figure the circles are exper
-
FIG. 8. The characteristic relation of the av
erage laminar length versusuVt2Vu in the pres-
ence of 1.0-V noise.~a! and~b! for e.0 and~c!
and ~d! for e,0.
2-6
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mental results and the dashed line is the slope of21/4. So
the measured average laminar length is well fitted to
theoretically expected slope. In this experiment, witho
noise one cannot observe the typical behavior of interm
tency for the region ofV,Vt .

Now, the noise generator is turned on and the aver
laminar length is measured according to the amplitude of
driving signal when the noise amplitude is 1.0 V. The da
are stored in the computer. In the experiment, we are abl
measure a laminar phase length of 1.23105 at most because
of the limit of computer memory. So the range of the drivin
signal amplitude for which we have studied the characteris
relations is from 3.5070 V to 3.6072 V.

As shown in Fig. 8, we obtain the characteristic relatio
for two regionse.0 ande,0. The experimental data of the
average laminar length versusV2Vt for e.0 are given in
Figs. 8~a! and 8~b!. In Fig. 8~a! the plot of ^ l & versus (Vt
2V)21/4 shows a linear curve forV!Vt . To see it more
clearly we obtain the slope in the logarithmic scale. Figu
8~b! shows that the slope of the experimental data is w
fitted to the21/4 slope of the solid line. This means that th
characteristic relation iŝl &}e21/4 for V!Vt . This is the
very characteristic relation fore@D.0 that was obtained in
the previous theoretical analysis@4#. The figure also shows
that ^ l & approacheŝl 0& as V approachesVt because of the
deformation.

Figures 8~c! and 8~d! show the characteristic relation fo
the regionV.Vt . As shown in Fig. 8~c!, the plot of ln̂ l&
versusuVt2Vu3/2 shows a linear curve. To show the chara
teristic relation more clearly, we obtain they interception of
ln^l0& from Fig. 8~c! by linear regression of the curve. ln^l0&
is about 2.0. The plot of ln(ln̂l&2ln^l0&) versus lnuVt2Vu is
well fitted to the slope of 3/2 as given in Fig. 8~d!. It means
that the characteristic relation obtained in the experim
J

tt.

tt.
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agrees well with the theoretical one@13#, i.e., ^ l &
}^ l &0 exp(auV2Vtu3/2). From the above figures we explicit
understand that the characteristic relations are^ l &}e21/4 for
V!Vt , ^ l &;^ l 0& for V&Vt , and ^ l &}^ l &0 exp(auV2Vtu3/2)
for V.Vt .

It seems appropriate to comment on why our experime
result is different from the theoretical prediction of Ref.@13#
for the case of thee.0 regime. In fact, while our exper
mental result belongs to the case having the RPD of the
1/x1/2, the theoretical one has used the fixed RPD.

VI. CONCLUSION

In conclusion, we have experimentally observed the c
acteristic relations of type-I intermittency in the presenc
noise according to the channel width in a simple IRD circ
First, we have shown that, in the absence of noise, the
acteristic relation iŝ l &}e21/4 due to the RPD of the form
x21/2. Then, we have observed the characteristic relation
the presence of noise, that is,^ l &}e21/4 for e@0, ^ l &;^ l 0&
for e*0, and^ l &}expueu3/2 for e,0. These results show th
the theoretically predicted characteristic relations of ty
intermittency in the presence of noise@13# are actually ob
servable in a real chaotic dynamical system under noisy
cumstances.

Finally, through further investigation it is interesting
find the experimental phenomenon having the fixed R
which corresponds to another theoretical prediction^ l &
}e21/2 for the case of thee.0 regime in Ref.@13#.

ACKNOWLEDGMENT

This work was supported by the Creative Research In
tives of the Korean Ministry of Science and Technology.
.

A

tt.

p.

al
k

@1# Y. Pomeau and P. Manneville, Commun. Math. Phys.74, 189
~1980!; H. Kaplan, Phys. Rev. Lett.68, 553 ~1992!; J.E. Hir-
sch, B.A. Hubetman, and J. Scalapino, Phys. Rev. A25, 519
~1982!; P. Berg, M. Dubois, P. Manneville, and Y. Pomeau,
Phys.~France! Lett. 41, L344 ~1980!; M. Dubois, M.A. Rubio,
and P. Berg, Phys. Rev. Lett.51, 1446~1983!; J.Y. Huang and
J.J. Kim, Phys. Rev. A36, 1495~1987!.

@2# P. Manneville and Y. Pomeau, Phys. Lett.75A, 1 ~1979!.
@3# B. Hu and J. Rudnick, Phys. Rev. Lett.48, 1645~1982!.
@4# O.J. Kwon, C.M. Kim, E.K. Lee, and H. Lee, Phys. Rev. E53,

1253 ~1996!; C.M. Kim and W.H. Kye, ibid. 63, 037202
~2001!.

@5# H.G. Schuster,Deterministic Chaos, 2nd ed.~VCH, Weinheim,
1987!.

@6# C.M. Kim, O.J. Kwon, E.K. Lee, and H. Lee, Phys. Rev. Le
73, 525 ~1994!.

@7# C.M. Kim, G.S. Yim, Y.S. Kim, J.M. Kim, and H.W. Lee,
Phys. Rev. E56, 2573~1997!.

@8# C.M. Kim, G.S. Yim, J.W. Ryu, and Y.J. Park, Phys. Rev. Le
80, 5317~1998!.

@9# E. Ott, Chaos in Dynamical Systems~Cambridge University
Press, Cambridge, England, 1993!.
@10# J.P. Eckmann, L. Thomas, and P. Wittwer, J. Phys. A14, 3153
~1982!.

@11# J.E. Hirsch, B.A. Huberman, and D.J. Scalapino, Phys. Rev.
25, 519 ~1982!.

@12# J.E. Hirsch, M. Nauenberg, and D.J. Scalapino, Phys. Le
87A, 391 ~1982!.

@13# W.H. Kye and C.M. Kim, Phys. Rev. E62, 6304~2000!.
@14# D.J. Biswas, V. Dev, and U.K. Chatterjee, Phys. Rev. A35, 456

~1987!.
@15# C.M. Kim, K.S. Lee, J.M. Kim, S.O. Kwon, C.J. Kim, and

J.M. Lee, J. Opt. Soc. Am. B10, 1651~1993!.
@16# J.P. Crutchfield, J.D. Farmer, and B.A. Huberman, Phys. Re

92, 45 ~1982!.
@17# C.W. Gardiner,Handbook of Stochastic Methods, 2nd ed.

~Springer-Verlag, New York, 1985!; H. Risken,The Fokker-
Planck Equation, 2nd ed.~Springer-Verlag, New York, 1996!
~for the correspondence between the stochastic differenti
equation and FPE, see Secs. 3.6, 4.3, and 5.2 of the first boo!.

@18# E.R. Hunt, Phys. Rev. Lett.49, 1054~1982!; R.W. Rollins and
E.R. Hunt,ibid. 49, 1295~1982!; S.D. Brorson, D. Dewey, and
P.S. Linsay, Phys. Rev. A28, 1201 ~1983!; C.M. Kim, C.H.
Cho, C.S. Lee, J.H. Yim, J. Kim, and Y. Kim,ibid. 38, 1645
~1988!.
2-7


